Zimbabwe News

Spatial and spatio-temporal analysis of malaria cases in Zimbabwe | Infectious Diseases of Poverty

  • 1.

    Feng X, Levens J, Zhou XN. Protecting the gains of malaria elimination in China. Infect Dis of Poverty. 2020;9:43.

    Article 

    Google Scholar
     

  • 2.

    Gwitira I, Murwira A, Zengeya FM, Shekede MD. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa. Int J Appl Earth Obs Geoinf. 2018;64:12–21.

    Article 

    Google Scholar
     

  • 3.

    Deng T, Huang Y, Yu S, Gu J, Huang C. Spatial-temporal clusters and risk factors of hand, foot, and mouth disease at the district level in Guangdong Province, China. PLoS ONE. 2013;8(2):e56943.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    WHO. World malaria report 2019. Geneva: World Health Organisation; 2019.


    Google Scholar
     

  • 5.

    Campillo A, Daily J, Gonzalez IJ. International survey to identify diagnostic needs to support malaria elimination: guiding the development of combination highly sensitive rapid diagnostic tests. Malar J. 2017;16:385.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Masendu HT, Hunt RH, Koekemoer LL, Brooke BD, Govere J, Coetzee M, et al. Spatial and temporal distributions and insecticide susceptibility of malaria vectors in Zimbabwe. Afr Entomol. 2005;13:25–34.


    Google Scholar
     

  • 7.

    Taylor P, Mutambu SL. A review of the malaria situation in Zimbabwe with special reference to the period 1972–l981. Trans R Soc Trop Med Hyg. 1986;80:12–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Khagayi S, Desai M, Amek N, Were V, Onyango ED, Odero C, et al. Modelling the relationship between malaria prevalence as a measure of transmission and mortality across age groups. Malar J. 2019;18:247.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 9.

    Mfueni E, Devleesschauwer B, Aguirre AR, Malderen CV, Brandt PT, Ogutu B, et al. True malaria prevalence in children under five: Bayesian estimation using data of malaria household surveys from three subSaharan countries. Malar J. 2018;17:65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    WHO. World malaria report 2016. Geneva: World Health Organisation; 2016.


    Google Scholar
     

  • 11.

    Yakob L, Cameron M, Lines J. Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets. Malar J. 2017;11:1–13.


    Google Scholar
     

  • 12.

    Sande S, Zimba M, Chinwada P, Masendu HT, Mberikunshe J, Makuwaza A. A review of new challenges and prospects for malaria elimination in Mutare and Mutasa Districts. Zimbabwe Malar J. 2016;15:1.


    Google Scholar
     

  • 13.

    Sande S, Zimba M, Mberikunashe J, Tangwena A, Chimusoro A. Progress towards malaria elimination in Zimbabwe with special reference to the period 2003–2015. Malar J. 2017;16:295.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    WHO. Global technical strategy for malaria 2015. Geneva: World Health Organization; 2015a.


    Google Scholar
     

  • 15.

    Alegana VA, Okiro EA, Snow RW. Routine data for malaria morbidity estimation in Africa: challenges and prospects. BMC Med. 2020;18:121.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Mosha JF, Sturrock HJ, Greenwood BM, Sutherland CJ, Gadalla NB, Atwal S. Hot spot or not: a comparison of spatial statistical methods to predict prospective malaria infections. Malar J. 2014;13:53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J. 2006;5:78.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Hundessa SH, Williams G, Li S, Guo J, Chen L, Zhang W, et al. Spatial and space–time distribution of Plasmodiumvivax and Plasmodiumfalciparum malaria in China, 2005–2014. Malar J. 2016;15:1–11.

    Article 

    Google Scholar
     

  • 19.

    Landier J, Rebaudet S, Piarroux R, Gaudart J. Spatiotemporal analysis of malaria for new sustainable control strategies. BMC Med. 2018;16:226.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Bousema T, Kreuels B, Gosling R. Adjusting for heterogeneity of malaria transmission in longitudinal studies. J Infect Dis. 2011;204:1–3.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Stresman GH. Beyond temperature and precipitation: ecological risk factors that modify malaria transmission. Acta Trop. 2010;116:167–72.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Mclafferty S. Disease cluster detection methods: recent developments and Public health implications. Ann GIS. 2015;21:127–33.

    Article 

    Google Scholar
     

  • 23.

    Hasyim H, Nursafingi A, Haque U, Montag D, Groneberg DA, Dhimal M, et al. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia. Malar J. 2018;17:87.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against malaria. Bull World Health Organ. 2000;78:1401–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Magalhaes RJS, Langa A, Sousa-Figueiredo JC, Clements ACA, Nery SV. Finding malaria hot-spots in northern Angola: the role of individual, household and environmental factors within a meso-endemic area. Malar J. 2012;11:385.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Coleman M, Coleman M, Mabuza AM, Kok G, Coetzee M, Durrheim DN. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes. Malar J. 2009;8:68.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Loha E, Lunde TM, Lindtjørn B. Effect of bednets and indoor residual spraying on spatio-temporal clustering of malaria in a village in South Ethiopia: a longitudinal study. PLoS ONE. 2012;7(10):e47354.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Gaudart J, Poudiougou B, Dicko A, Ranque S, Toure O, Sagara I, et al. Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village. BMC Publ Health. 2006;6:286.

    Article 

    Google Scholar
     

  • 29.

    Wen L, Li C, Lin M, Yuan Z, Huo D, Li S, et al. Spatio-temporal analysis of malaria incidence at the village level in a malaria-endemic area in Hainan, China. Malar J. 2011;10:1–7.

    Article 

    Google Scholar
     

  • 30.

    Alemu K, Worku A, Berhane Y. Malaria infection has spatial, temporal and spatiotemporal heterogeneity in unstable malaria transmission areas in Northwest Ethiopia. PLoS ONE. 2013;8(11):e79966.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Manyangadze T, Chimbari MJ, Macherera M, Mukaratirwa S. Micro-spatial distribution of malaria cases and control strategies at ward level in Gwanda district, Matabeleland South, Zimbabwe. Malar J. 2017;16:476.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Xia J, Cai S, Zhang H, Lin W, Fan Y, Qiu J, et al. Spatial, temporal and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011. Malar J. 2015;14:145.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Gwitira I, Murwira A, Mberikunashe J, Masocha M. Spatial overlaps in the distribution of HIV/AIDS and malaria in Zimbabwe. BMC Infect Dis. 2018;18:1.

    Article 

    Google Scholar
     

  • 34.

    Wheeler DC. A comparison of spatial clustering and cluster detection techniques for childhood leukaemia incidence in Ohio, 1996–2003. Int J Health Geogr. 2007;6:13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Yamada I, Rogerson PA, Lee G. GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters. J Geogr Syst. 2009;11:155–73.

    Article 

    Google Scholar
     

  • 36.

    Robertson C, Nelson TA. Review of software for space-time disease surveillance. Int J Health Geogr. 2010;9:16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Wand H, Ramjee G. Targeting the hotspots: investigating spatial and demographic variations in HIV infection in small communities in South Africa. J Int AIDS Soc. 2010;13:41.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Tango T, Takahashi K. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters. Stat Med. 2012;31:4207–18.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Barro AS, Kracalik IT, Malania L, Tsertsvadze N, Manvelyan J, Imnadze P, et al. Identifying hotspots of human anthrax transmission using three local clustering techniques. Appl Geogr. 2015;60:29–36.

    Article 

    Google Scholar
     

  • 40.

    Song C, Kulldorff M. Power evaluation of disease clustering tests. Int J Health Geogr. 2003;2:9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Huang L, Pickle LW, Das B. Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Stat Med. 2008;27:5111–42.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Kulldorff M. A spatial scan statistic. Commun Stat. 1997;26:1481–96.

    Article 

    Google Scholar
     

  • 43.

    Ndhlovu F, Ndhlovu DN, Chikerema SM, Masocha M, Nyagura M, Pfukenyi DM. Spatio-temporal patterns of clinical bovine dermatophilosis in Zimbabwe 1995–2014. Onderstepoort J Vet Res. 2017. https://doi.org/10.4102/ojvr.v4184i4101.1386.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Mabaso MLH, Vounatsou MP, Smith T. Towards empirical description of malaria seasonality in southern Africa: the example of Zimbabwe. Trop Med Int Health. 2005;10:909–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Dehnavieh R, Haghdoost A, Khosravi A, Hoseinabadi F, Rahimi H, Poursheikhali A, et al. The District Health Information System (DHIS2): a literature review and metasynthesis of its strengths and operational challenges based on the experiences of 11 countries. Health Inf Manage J. 2018;48:62–75.


    Google Scholar
     

  • 46.

    ESRI. ArcGIS Desktop. Release 10.3. 2011, Environmental Systems Research Institute: Redlands CA.

  • 47.

    USAID. President’s malaria initiative Zimbabwe: Malaria operational plan FY 2017. Washington: USAID 2016.

  • 48.

    Rowe A, Kachur SP, Yoon SS, Lnych M, Sluster L, Steketee RW. Caution is required when using health facility-based data to evaluate the health impact of malaria control efforts in Africa. Malar J. 2009;8:209.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Gerrets R. Charting the road to eradication: Health facility data and malaria indicator generation in rural Tanzania. In: Rottenburg R, editor. The world of indicators: the making of governmental knowledge through quantification. Cambridge: Cambridge University Press; 2015. p. 36.


    Google Scholar
     

  • 50.

    WHO. Global technical strategy for malaria elimination 2016–2030. Geneva: World Health Organization; 2015b.


    Google Scholar
     

  • 51.

    ZIMSTAT. Zimbabwe Population Census 2012. Harare: ZIMSTAT 2012.

  • 52.

    CSO. Zimbabwe National Population Census 2002. Harare: CSO 2002.

  • 53.

    ZIMSTAT. Zimbabwe Population Projections Thematic Report. Harare: ZIMSTAT 2015.

  • 54.

    Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements AAC. Spatial analysis in epidemiology. New York: Oxford University Press; 2008.

    Book 

    Google Scholar
     

  • 55.

    Poh-Chin L, Fun-Mun So KWC. Spatial epidemiological approaches in disease mapping and analysis. New York: CRC Press; 2009.


    Google Scholar
     

  • 56.

    Chowdhury AI, Abdullah AYM, Haider R, Alam A, Billah SM, Bari S, et al. Analyzing spatial and space-time clustering of facility-based deliveries in Bangladesh. Trop Med Health. 2019;47:44.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Cheung YTD, Spittal MJ, Williamson MK, Tung SJ, Pirkis J. Application of scan statistics to detect suicide clusters in Australia. PLoS ONE. 2013;8(1):e54168.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Kulldorff M. Commentary: geographical distribution of sporadic Creutzfeldt-Jakob disease in France. Int J Epidemiol. 2002;31:495–6.

    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Chen J, Roth RE, Naito AT, Lengerich EJ, MacEachren AM. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of US Cervical cancer mortality. Int J Health Geogr. 2008;7:57.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 60.

    Zhang W, Wang L, Fang L, Ma J, Xu Y, Jiang J, et al. Spatial analysis of malaria in Anhui province, China. Malar J. 2008;7:206.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Liu Y, Wang X, Liu Y, Sun D, Ding S, Zhang B, et al. Detecting spatial-temporal clusters of HFMD from 2007 to 2011 in Shandong Province, China. PLoS ONE. 2013;8(5):e63447.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Gwitira I, Murwira A, Masocha M, Zengeya FM, Shekede MD, Chirenda J, et al. GIS-based stratification of malaria risk zones for Zimbabwe. Geocarto Int. 2019;34:1163–76.

    Article 

    Google Scholar
     

  • 63.

    Bannister-Tyrrell M, Verdonck K, Hausmann-Muela S, Gryseels C, Ribera JM, Grietens KP. Defining micro-epidemiology for malaria elimination: systematic review and meta-analysis. Malar J. 2017;16:164.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    UNDESA. Sustainable Development Goal 3: Ensuring Health Lives and Promote Well-Being for All at All Ages. 2015: https://sustainabledevelopment.un.org/sdg3. Accessed on 15 September 2019.

  • 65.

    Okello G, Molyneux S, Zakayo S, Gerrets R, Jones C. Producing routine malaria data: an exploration of the micro-practices and processes shaping routine malaria data quality in frontline health facilities in Kenya. Malar J. 2019;18:420.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Byass P. Making sense of long-term changes in malaria. Lancet. 2008;372:1523–5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 67.

    Manyangadze T, Chimbari MJ, Gebreslasie M, Mukaratirwa S. Risk factors and micro-geographical heterogeneity of Schistosoma haematobium in Ndumo area, uMkhanyakude district, KwaZulu-Natal. South Africa Acta Tropica. 2016;159:176–84.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 68.

    Saita S, Silawan T, Parker DM, Sriwichai P, Phuanukoonnon S, Sudathip P, et al. Spatial heterogeneity and temporal trends in malaria on the Thai-Myanmar Border (2012–2017): a retrospective observational study. Trop Med Infect Dis. 2019;4:62.

    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Xu X, Zhou G, Wang Y, Hu Y, Ruan Y, Fan Q, et al. Microgeographic heterogeneity of border malaria during elimination phase, Yunnan Province, China, 2011–2013. Emerg Infect Dis. 2016;22:8.

    Article 

    Google Scholar
     

  • 70.

    Prashanthi DM, Manickiam B, Balasubramanian S. Use of of Remote Sensing and GIS for monitoring the Environmental factors associated with Vector-borne Disease (Malaria). Third International Conference on Environment and Health. Chennai: Department of Geography. University of Madras and Faculty of Environmental Studies 2003.

  • 71.

    Muchena G, Dube B, Chikodzore R, Pasipamire J, Murugasampillay S, Mberikunashe J. A review of progress towards sub-national malaria elimination in Matabeleland South Province, Zimbabwe (2011–2015): a qualitative study. Malar J. 2018;17:146.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Adeola A, Ncongwane K, Abiodun G, Makgoale T, Rautenbach H, Botai J, et al. Rainfall trends and malaria occurrences in Limpopo Province, South Africa. Int J Environ Res Publ Health. 2019;16:5156.

    Article 

    Google Scholar
     

  • 73.

    SADC. SADC Malaria Elimination Eight Initiative: Annual Report 2019. Windhoek: Elimination8 2019.

  • 74.

    Kamuliwo M, Chanda E, Haque U, Mwanza-Ingwe M, Sikaala C, Katebe-Sakala C, et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar J. 2013;12:437.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 75.

    Aamodt G, Samuelsen SO, Skrondal A. A simulation study of three methods for detecting disease clusters. Int J Health Geogr. 2006;5:15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button